Tetrahexagonal tiling
| Tetrahexagonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (4.6)2 | 
| Schläfli symbol | r{6,4} or  rr{6,6} r(4,4,3) t0,1,2,3(∞,3,∞,3)  | 
| Wythoff symbol | 2 | 6 4 | 
| Coxeter diagram | |
| Symmetry group | [6,4], (*642) [6,6], (*662) [(4,4,3)], (*443) [(∞,3,∞,3)], (*3232)  | 
| Dual | Order-6-4 quasiregular rhombic tiling | 
| Properties | Vertex-transitive edge-transitive | 
In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.
Constructions
There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [6,4] kaleidoscope. Removing the last mirror, [6,4,1+], gives [6,6], (*662). Removing the first mirror [1+,6,4], gives [(4,4,3)], (*443). Removing both mirror as [1+,6,4,1+], leaving [(3,∞,3,∞)] (*3232).
| Uniform Coloring  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|---|---|---|---|---|
| Fundamental Domains  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| Schläfli | r{6,4} | r{4,6} 1⁄2 | r{6,4} 1⁄2 | r{6,4} 1⁄4 | 
| Symmetry | [6,4] (*642)  | 
[6,6] = [6,4,1+] (*662)  | 
[(4,4,3)] = [1+,6,4] (*443)  | 
[(∞,3,∞,3)] = [1+,6,4,1+] (*3232)  | 
| Symbol | r{6,4} | rr{6,6} | r(4,3,4) | t0,1,2,3(∞,3,∞,3) | 
| Coxeter diagram  | 
Symmetry
The dual tiling, called a rhombic tetrahexagonal tiling, with face configuration V4.6.4.6, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*3232), shown here in two different centered views. Adding a 2-fold rotation point in the center of each rhombi represents a (2*32) orbifold.
Related polyhedra and tiling
| *n42 symmetry mutations of quasiregular tilings: (4.n)2 | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *4n2 [n,4]  | 
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
| *342 [3,4]  | 
*442 [4,4]  | 
*542 [5,4]  | 
*642 [6,4]  | 
*742 [7,4]  | 
*842 [8,4]...  | 
*∞42 [∞,4]  | 
  [ni,4]  | |
| Figures | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|
| Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 | 
| Symmetry mutation of quasiregular tilings: 6.n.6.n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *6n2 [n,6]  | 
Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
| *632 [3,6]  | 
*642 [4,6]  | 
*652 [5,6]  | 
*662 [6,6]  | 
*762 [7,6]  | 
*862 [8,6]...  | 
*∞62 [∞,6]  | 
  [iπ/λ,6]  | ||||
| Quasiregular figures configuration  | 
![]() 6.3.6.3  | 
![]() 6.4.6.4  | 
![]() 6.5.6.5  | 
![]() 6.6.6.6  | 
![]() 6.7.6.7  | 
![]() 6.8.6.8  | 
![]() 6.∞.6.∞  | 
6.∞.6.∞  | |||
| Dual figures | |||||||||||
| Rhombic figures configuration  | 
![]() V6.3.6.3  | 
![]() V6.4.6.4  | 
![]() V6.5.6.5  | 
![]() V6.6.6.6  | 
V6.7.6.7  | 
![]() V6.8.6.8  | 
![]() V6.∞.6.∞  | 
||||
| Uniform tetrahexagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry)  | |||||||||||
= = =  | 
=  | 
= = =  | 
=  | 
= = =  | 
=  | 
||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||||
| {6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
| Uniform duals | |||||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||||
| V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
| Alternations | |||||||||||
| [1+,6,4] (*443)  | 
[6+,4] (6*2)  | 
[6,1+,4] (*3222)  | 
[6,4+] (4*3)  | 
[6,4,1+] (*662)  | 
[(6,4,2+)] (2*32)  | 
[6,4]+ (642)  | |||||
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||||
| h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} | |||||
| Uniform hexahexagonal tilings | ||||||
|---|---|---|---|---|---|---|
| Symmetry: [6,6], (*662) | ||||||
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| {6,6} = h{4,6}  | 
t{6,6} = h2{4,6}  | 
r{6,6} {6,4}  | 
t{6,6} = h2{4,6}  | 
{6,6} = h{4,6}  | 
rr{6,6} r{6,4}  | 
tr{6,6} t{6,4}  | 
| Uniform duals | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 | 
| Alternations | ||||||
| [1+,6,6] (*663)  | 
[6+,6] (6*3)  | 
[6,1+,6] (*3232)  | 
[6,6+] (6*3)  | 
[6,6,1+] (*663)  | 
[(6,6,2+)] (2*33)  | 
[6,6]+ (662)  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | ||
| h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} | 
| Uniform (4,4,3) tilings | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443)  | 
[(4,4,3+)] (3*22)  | 
[(4,1+,4,3)] (*3232)  | |||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| h{6,4} t0(4,4,3)  | 
h2{6,4} t0,1(4,4,3)  | 
{4,6}1/2 t1(4,4,3)  | 
h2{6,4} t1,2(4,4,3)  | 
h{6,4} t2(4,4,3)  | 
r{6,4}1/2 t0,2(4,4,3)  | 
t{4,6}1/2 t0,1,2(4,4,3)  | 
s{4,6}1/2 s(4,4,3)  | 
hr{4,6}1/2 hr(4,3,4)  | 
h{4,6}1/2 h(4,3,4)  | 
q{4,6} h1(4,3,4)  | 
| Uniform duals | ||||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|||||||
| V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 | 
| Similar H2 tilings in *3232 symmetry | ||||||||
|---|---|---|---|---|---|---|---|---|
| Coxeter diagrams  | 
||||||||
|   |   |   |   | 
  |   | |||
| Vertex figure  | 
66 | (3.4.3.4)2 | 3.4.6.6.4 | 6.4.6.4 | ||||
| Image | ![]()  | 
![]()  | 
![]()  | 
![]()  | ||||
| Dual | ![]()  | 
![]()  | ||||||
See also
| Wikimedia Commons has media related to Uniform tiling 4-6-4-6. | 
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
External links
- Hyperbolic and Spherical Tiling Gallery
 - KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
 - Hyperbolic Planar Tessellations, Don Hatch
 
This article is issued from Wikipedia - version of the 5/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.











































































